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The effect of magnetic fields on collective properties of polyatomic gases
has been extended outside the hydrodynamic regime. The calculations are
based on a linearized Waldmann—Snider equation. The Waldmann-Snider
collision operator is truncated yielding a finite matrix equation. The resulting
matrix equation is solved on a computer to yield the polarized and depolarized
light scattering spectra. These spectra are calculated in the absence and
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effects. For shorter wavelengths the effects disappear due to Doppler effects.
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1. INTRODUCTION

The first indication that collective properties of polyatomic gases are affected
by a magnetic field was given by Senftleben™ in 1930 when he observed that
the thermal conductivity of oxygen was changed by a few per cent by the
application of a field. The corresponding effect on the shear viscosity was
seen by Engelhardt and Sack® in 1932. A similar effect was seen for nitric
oxide but nothing at the time was observed for diamagnetic gases.
However, in 1962 Beenakker ef al.® demonstrated experimentally that the
shear viscosity of carbon monoxide showed field effects similar to those of the
paramagnetic gases. The corresponding thermal conduction effect was
observed by Gorelik and Sinitsyn‘® in 1964,

The field effects on the transport coefficients are now well understood
in terms of the coupling of the rotational magnetic moment of a polyatomic
molecule to the magnetic field. Taking into account this coupling, McCourt
and Snider'® have calculated the transport coefficients in a static field for
molecules having a constant g factor using the Waldmann—Snider® (WS)
transport equation. Their analysis was extended to include collinear static
and oscillatory magnetic fields by Fleming and Martin™® and Roden et al.®®
Fleming and Martin have extended the analysis to include a distribution of
molecular magnetic moments, which is important when discussing para-
magnetic gases. A more extensive discussion of field effects on transport
properties is contained in the excellent review by Beenakker and McCourt.®

If the transport coefficients of a polyatomic gas are affected by a magnetic
field, then there will be a corresponding effect on the hydrodynamic?®
equations for the gas. In this work we have extended the theory of the
collective behavior of polyatomic gases outside the hydrodynamic regime.
We expect this extended theory to be useful in the analysis of neutron
and light scattering experiments. Our calculation of the depolarized light
scattering spectrum includes the rotational Raman lines as well as the
Rayleigh line. This extends the calculations of Hess,*"! who treated only the
Rayleigh line.

2. KINETIC THEORY

In order to calculate the collective properties of polyatomic gases we
need a kinetic equation which includes internal degrees of freedom and can
be extended to shorter than hydrodynamic wavelengths. An equation® is
used which is an extension of the WS equation:

[z — (@ - K/m)] G&pp'2) — § dp ) Gkpp'z) = 3 — ) 1o (1)
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where k is the wave vector and z is a complex frequency such that Im z > 0.
Here G is an analytic function of z in the upper half-plane. In addition to the
explicit dependence on the spatial variables, G is also a two-particle operator
in the direct product space of internal variables. 1, is the corresponding unit
operator in that space. If f;,-(xpt) is the Wigner operator at position r and
momentum p at time ¢ corresponding to internal states labeled by A and X',
then G is related to the correlation function of two f’s®® by

G(kpp'z) fo(@") = (1/0) j: dt d(r — r')[exp(izt) {exp[—ik - (r — r)]}

X {Lfapt) — {fapeD), LAEDT) — F@p N> ()

where the labels A, A" are implicit, the brackets { > denote the equilibrium
expectation value, and

Jo@) = {f(pD)y = (n/Q™)(B[2mm)** exp{—Bl(p*/2m) +~ H™]}  (3)

Hmt jg the single-particle contribution to the internal-state Hamiltonian
and Qint = tr exp(—fHit) is the internal-state partition function. In
Eq. (1) the notation £ dp is used to denote simultaneously integration over p
and a trace over internal variables. The kernal £ of Eq. (1) consists of two
parts:

Q(pp’) = [H™, 1,] 8(p — p') + 2pp)) = 2i(pp") + (op) ()

The first term contains all the single-particle contributions of the internal
variables to the dynamics, while £2¢ contains the effects of two-body collisions.
The explicit form of £2¢ in terms of the full two-particle transition matrix
of the system is given in Appendix A.

Equation (1) is consistent for low frequencies and long wavelengths
with the correct hydrodynamic behavior in terms of the transport coefficients
calculated from the same equation. However, since the terms discarded in
deriving Eq. (1) are of higher order in the density, we expect it to be a good
approximation for dilute gases for all frequencies and wavelengths in the
same sense that the ordinary Boltzmann equation is a good approximate
equation for all frequencies and wavelengths for atomic gases. We therefore
examine the solution of (1) as a function of k and z. In particular we shall be
interested in the density—density correlation function S(kw), which is related
to G by

Skw) = —2Im f dp dp’ Gspp'w + i€) £,(p') )

and which is directly measured in neutron scattering and polarized light
scattering.
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For depolarized light scattering we shall be concerned with the orientational
correlation function

S (k) = —2 Im f dp dp’ Yin(8¢) Gkpp'w + ie) Vi (84) ) (6)

where Y;,,(0¢) is a spherical harmonic of the molecular orientation specified
by the angles § and ¢. It can be shown®® that SZ,,. describes the depolarized
light scattering for a gas of linear molecules.

In order to examine the nature of the solution to Eq. (1), assume that
the Hamiltonian consists of two parts

Hint — Hgnt — ')/J ‘H (7)

where J is the total internal angular momentum of a molecule and H is a
static magnetic field. H{™ is the internal Hamiltonian in the absence of any
external field. Hi® is therefore rotationally invariant and hence commutes
with J:

[J, Hi"] = 0 ®)

In Eq. (7) y = gyuy (A = 1) is the gyromagnetic ratio with g, the Landé g
factor and uy the nuclear magneton. In general g, should be treated as a
scalar operator in the internal-state space. However, for simplicity g, is treated
as a constant. The generalization to include the operator character of g, is
straightforward and can be handled by the method introduced in Ref. 7.

It is readily shown that Eq. (1) is consistent with the conservation laws
of particles, momentum, and energy.® This can be seen since

1

fdp( P )Q(pp'>=0 ©)
p2/2m_Jl_Hint

It is convenient therefore to think of Eq. (1) in terms of the Hilbert space
defined by the set of all functions of p and internal variables with scalar
product defined by

pl Dy = (1/n)f dp J(p) P(p) /o) = <(p) P(@)> (10)

where » is the number density.

® Equation (1) is not, however, consistent with conservation of angular momentum. This
point has been discussed extensively in Ref. 12.
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The conserved variables form a five-dimensional subspace of this Hilbert
space. We represent this subspace in terms of the orthonormal basis functions

PID=d@=1 P2 == @Em7p
P 13> = @) = B/Ve(p¥2m) — (3/2B) + HMt — (HIM)]

where ¢, is the specific heat of the gas.
Equation (1) can be projected into this subspace to give a “matrix”
equation of the form

[28048 - Zow(kz)] GVB(kZ) = BaB oy ﬁb Y = L 2’ 3 (12)
where a summation convention is employed over repeated indices,
Gup(kz) = {a| G(k2)| By = <a| [z — (p - k/m) — L] B>
= (1n) § dp dp’ (@) G(kpp'2) D)

and “mass operator”

= |23

(5 e g 25 |8

with Q =1 —P and P = Zz=1 | ap<{e |. Formally, Eq. (12) is an exact
projection of Eq. (1) onto the subspace of conserved quantities. In effect all
we have done is to shift the emphasis from calculating the operator

Gkz) = 1/[z — (p * kjm) — &] (13)

to calculating the memory operator

(1)

Kkz) = Q

1 B 1
—opumrel - Cr—gpumo—2 2

since P2 = QP = 0.

Equation (12) is exactly equivalent to Eq. (1). Our method of approximate
solution for K will be outlined later. We first notice that the X matrix can be
put into the especially suggestive form

0 myt k 0 ‘

m AL k (ék)-nzzz)-k m 2k g\
(7?) m mn ( Be, ) m ( me, ) k * Bry (kz) : Kk
0 (B"Z )1/2%‘1-—( mfi )”2 Kk : By r(kz) -k ~i k_%‘%%i

(15)
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where

n(kZ)=inB<TiQZ_Q(p-1i/m)Q*QQ‘T>
JE>

Brs(kz) = —nf <T\ Q Q Q Q. — ol - k/m) 0—Q 2 ’ J>

n(kz) =

_ p 1
B, (k) — Q~——Z__QQ;”—QZ~Q(p_k/m)Q_QQ[T>

The stress tensor T  and heat current J, are represented by

piT) =pp/m (16a)
and
vl = [(p?[2m) + H™] p (16b)
n, %, and the B’s are generalized transport coefficients defined such that
lim [im n(kz) == n = 7,11 + n, (17a)

the viscosity, a fourth-rank tensor (), is the bulk viscosity and n; the shear

viscosity),
lzi_)I{)l }{15%1 wkz) = » (17b)

the thermal conductivity a second-rank tensor, and
lzi_{% lli({)l'(l) BTJq(kZ) = BTJq = BJqT (179

The B’s are fourth-rank tensors and are usually called Burnett'® coefficients.

The equations of motion of the conserved variables are of the form of
generalized Burnett equations. This is to be contrasted with the usual treat-
ments of “generalized hydrodynamics”®® which are generalizations of the
Navier—-Stokes equations. However, when pushed to full generality the
generalized hydrodynamic procedure must yield equations very similar to
ours.®® Once we have an expression for K we can solve Eq. (12); in
particular we would obtain the density correlation function

Skw) = —2n Im G;(kw -+ i) (17d)

3. HYDRODYNAMIC LIMIT

It is clear from (14) that in the limit of low frequencies and long wave-
lengths our equations reduce to the ordinary linearized Navier—Stokes
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equations. In the presence of a magnetic field the transport coefficients are
no longer isotropic. There are five independent components of the shear
viscosity and three independent components of the thermal conductivity.
As a result the damping coefficients implied by the Navier—Stokes equations
will depend upon the direction of the vector k relative to the magnetic field H.
With this in mind it is straight forward to generalize the treatment of the
hydrodynamic behavior of correlations of conserved quantities as presented
by Kadanoff and Martin®? to include anisotropic transport coefficients.
Since the field effects on the transport coefficients are typically of the order
of a few per cent, the mixing of transverse and longitudinal modes due to the
field can be neglected. Thus we obtain for the density—density correlation
function

Stka) = 7 (g—Z)T

D2k2[1 - (Cv/cp)]
W + (D

+ le4cl(2c7,/c@) — Dok*(w® — * K31 — (cy/cy)]

(@? — kB T (Dikw) (18)
where
_ Masms K (1 1 _ K e 1 (2P
Dl*mn+mn(cv cp)’ Dz_mcp’ cl_m(Bn)s

The elements of the transport coefficients are calculated in the Cartesian
basis defined by the three unit vectors

A

s =k, & = (0 — cos 0k)jsinf, & = (k x H)/sin 8

with cos 8 = £ - H.
It was shown in Ref. 7 that a convenient representation for the transport
coefficients is

DY

n = K“HH + k(1 —HH) + ke * H
and
n =11+ } n.e.e, (19)

e is the isotropic third-rank tensor and
{e:  e=VEEA -1, ey= /v, H
€y = 6r84, éx = (1/7/2)(é;sin O — &, cos 8 - ié,)

In terms of this basis the appropriate components of the transport coefficients
are

Na333 = Ny + Sno(cos? 6 — 3)2 + 1 + 1) sin® 0 4 3(n, + 7_p) sin* g

Kg3 = kqy COS% 0 -+ i, sin% 0 (20)
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The corresponding expressions for the density-energy correlation
function S, (kw) and energy-energy correlation function S, (kw) are

on Dyk? Dik¥(w? — ¢,2k?)
Snelkew) = ( /3) ( Wt 2(D2k2)2 T (w? —1c12k2)2 + (Do) )
+ LS, ) @1

mnc,Dok? € €
Sulle) = 72 e 2 L S, w) + (S 2) S,k
where n, €, and p are the number density, energy density, and pressure of the
equilibrium system, respectively.

Even though the coupling of the transverse and longitudinal modes is
negligible, we must take into account the splitting of the usual twofold
degenerate transverse diffusive modes®” due to the presence of the field.
In terms of the basis defined in (2) the transverse momentum correlation
functions are of the form

T . mn/B
Sgg(kw) = [w? - (D2 [w® + D3]
w?DUE2 - [DULD22 — (D12)2] D22kS  —D12k2{s? — k4 DULD22 — (D12)2]}
(_ D2k%{w? — kA DUD2 - (DR)2]} D222 -+ [DULD2 — (D'2)?] Duk‘*)
(22)

where
D = ny55/mn, D2 = 55/mn, D?2 = nyp05/mn

and
Dl . Dll + D22 i [(Dll — D22)2 — 4(D12)2]1/2
D 2

In terms of our invariant representation of the transport coefficients the
components of the viscosity are

Naus = [Em0 + 602 + n-2)] sin® 20 + 1(n; + n_4) cos? 20
Nazes = (M + 7—1) c08? & -+ 1(n + 1-,) sin® 0 (23)
Na1as = —2i(n — 7-y) cos 20 cos O — Li(n, — n_p) sin 20 sin §

The specific expressions for the transport coefficients in the presence of the
magnetic field are approximately given by -8

if‘hs/ I} _ (hs/ T 99)
1+ (il’«hj}ss)] ’ = [1 4 + (1o Tge)? ]

@4)
1 ()T @4,/ Ty
% G4 e T T o))

m= 2 [1— &

KJ_ZK[I——
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Table I¢
Gas & /€ hof s Tgs/Tes
N, 0.003 3.5 0.000144H/P 0.450
CO 0.00375 2.19 0.000110H/P 0.570
CH, 0.00077 3.57 0.0000485H/P 0.288

2 Hin Qe, P in Torr.

where 7 and « are the viscosity and thermal conductivity of the gas in the
absence of the field; A, = vH is the precession frequency of the molecular
magnetic moment; Iy and Iy, are molecular collision frequencies which
will be defined in the next section; £ and q, are dimensionless parameters of
the order of the square of the deviation from sphericity of the molecules.

The parameters in Eq. (24) can be obtained from direct transport
measurements in the presence of a magnetic field. Typical values of these
parameters as determined from experiments by Korving et al.®® are given
in Table I. Since S(kw) gives the spectrum of polarized light, the magnetic
field effects on the transport coefficients should be seen in the experimental
linewidths of light scattering experiments.

4. EXTENSION TO SHORTER WAVELENGTHS

In order to solve Eq. (12) for arbitrary frequencies and wave numbers,
certain assumptions about the form of the collision kernal £2¢ must be made.
This must be done in a way which is consistent with approximate calculations
of transport coefficients. This assures that the solution will have the correct
hydrodynamic limit. Assume that £2¢is of the form

Q0 = 0, 4+ 0,(68) 0, (25)

where £2, is a constant and @, is a projector on a subspace of the Q subspace.
If 2, =0 and Q, = @, Eq. (25) is exact. By keeping only a finite subset
0, of @, it is hoped that all of the important physics of the collective pro-
perties will be retained. By projecting out the conserved variables, we have
separated all the slowly decaying quantities at long wavelengths from all the
other nonconserved variables which must decay more rapidly. As discussed
elsewhere,? it is just this separation of time scales which implies the hydro-
dynamic equations at low frequencies and longwavelengths. The assumption
that @, corresponds to a finite subspace is equivalent to terminating Mori’s‘2®
continued fraction representation at a finite number. In order to obtain the

822(7/4-3
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correct hydrodynamic limit which gives the magnetic field effects, we include
in @, not only the currents of the conserved variables, but also internal
variables which couple with the currents and also to the magnetic field. As
stressed in Ref. 7, these internal variables should contain the internal angular
momentum J in terms of a second-rank tensor. Thus as in Ref. 7 we assume

0, = z e | (26)
where
@1 = ) = (ar) B[ () o (- )|
P15 = bslp) = 7% [P,
@165 =40 = (=) "B (L~ 55) »

P17 = bulp) = (Bfmc™12 B(H™ — CHIT) p
P18 = yp) = (30/<4J* — 3J2))12 [J]®
P 19> = by(p) = (30B/m¢4J* — 3J%)2 [J]® p

where cint is the internal contribution to the specific heat in units of k5,
e =3 ¢, =% [p)} =pip; — 4 8,p% and 1P = HJ:, 1} — 4 8,72
The currents of the conserved quantities are given in terms of the ’s by

@1QIT) = (UB)cintee, 12 (@) 1+ (V2/B) bs(p)
Pl QU = (c,"/mB%) /2 () + (c1/mpB®) by(p)
When discussing depolarized light scattering we also need

P12m) = (@) = You(0, $)[<{Yom | Yom>'/ 28

For simplicity the coupling of the ¥,,, to the ¢, , « = 4,9, will be neglected.
That is, we assume Y, is outside of the Q, subspace. This is almost certainly
not the case. In fact ¢,,, is not even orthogonal to 5. A more correct
treatment would assign the part of ¥,,, which is orthogonal to ¢ as a separate
vector in the finite vector space and then keep the contributions of both
vectors along with their possible coupling to the depolarized scattering.
However, it will greatly simplify the analysis if &,,, is treated separately from
the ¢, , « = 4, 9. As more depolarized light scattering data become available,
it may be necessary to carry out this more complete analysis to obtain
quantitative agreement with experiments.

@7
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The matrix elements of £2¢ are parameterized in a particularily convenient
way. From the requirement that the collision operator be isotropic we obtain
the following nonvanishing matrix elements of £2¢:

Q0 = Ty, Q% = Iylt, Q% = Il

i = Dls, Q% = Tl', Q% = Iyl

0, = Tyl, i = TWl', i = TyI'l,
Q8 = I'yll, i =T,

where IS, = 3(8.z 80 + 0. 85z — % 8,5 85) and i£2¢ is self-adjoint and positive
definite.

The I’s are not independent. McCourt and Snider*® have proven the
following indentities among the collision matrix elements:

F58:\/§F69s F66:§F55+%F44,
B o (29)
F67:%\/gr44> F44:%\/30F5s

In Appendix B we show that the solution for K reduces to a finite matrix
equation. The evaluation of the matrix elements involves complex error
functions. As a result it is useful to calculate the error functions by computer?
and to solve the matrix equations numerically. The numerical work was done
on Columbia University’s IBM 360/91-360/75 computer. For calculational
purposes we chose gaseous NV, as a typical diamagnetic gas. The collision
parameters can be obtained from field-dependent transport measurements. ®)
We used the values deduced from these measurements by McCourt and
Moraal.®® For simplicity we assume [ = Iy = nov,e;, Where n is the
density, vye; = 4(1/7mB)'72, and o = 23 A2

In Fig. 1 we have plotted S(kw) versus w for three different £’s in zero
field. The transition between hydrodynamic behavior at long wavelengths,
kinetic theory at intermediate wavelengths, and free-particle behavior at
short wavelengths is clearly seen.

At short wavelengths the Lorentzian Rayleigh—Brillouin spectrum is
replaced by the Gaussian free-particle spectrum. The frequency unit used
in Fig. 1 is @ = w/kv, where v = (2/mB)1/2. As a result the position of the
sound peak is independent of £ and occurs at & = 0.833. This natural
dimensionless frequency unit was first used by Yip.®® In Fig. 2 the change
of S(kw) from its zero-field value for A,/ = 2 is plotted. An effect on the
width which is of the same order of magnitude as the Senftleban effects for
long wavelengths is evident. The magnetic field effects disappear for short

? We have extended the program described by Christiansen. 2
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S{k,w)
®

X 1
¢} 0.20 0.40 0.60 0.80 .00

w

Fig. 1. The dynamic structure factor S(kw) (in units of n/I,,
where n is the number density and I, is a collision frequency)
versus o for three different wave vectors and parameters appro-
priate for nitrogen. The frequency unit is ® = w/kv, where

v = —2/mB is a thermal velocity. Therefore the position of the
sound peak is always at @ = 0.833. The unit of wave vector is
k= ko/T,.

wavelengths as soon as kv/h, > 1. That is, the appropriate frequency
describing the wavelength dependence is kv while %, , the Larmor frequency,
is the appropriate magnetic field frequency. So the kv term dominates at
large k.

5. DEPOLARIZED LIGHT SCATTERING
The spectrum of depolarized light is given by?®

Cikw) = f dr dt [exp(iowt)}[exp(—ik * r)[XP,(d(xt) - 4(0,0)>  (30)

where P, is the second Legendre polynomial and #(xt) is the orientation
vector of a molecule at point r at time ¢. It follows immediately from the
addition theorem of spherical harmonics that C? is given by®

Clkw) =3 Y Cpike) (1)

m=—2

8 If the axis of quantization is chosen to be the magnetic field direction, then matrix elements
of G corresponding to m’ # m vanish.
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Fig. 2. The deviation 4S(kw) = S(k, w) — S(k, w)ig-, of the
dynamic structure factor due to a magnetic field perpendicular to k
with magnitude such that 4,/I" = 2; three different wavevectors and
parameters chosen for nitrogen. For long wavelengths the change
is the same relative order of magnitude as the Sentleben effects.
However, the effects disappear rapidly for shorter wavelengths.

where
Ca(k) = £ dp b (D) GRPD'w + i€) Yn(®) /s@')

[c.f. Eq. (25) for the definition of i,,,].
In order to calculate C? from the transport equation (1) we make a
simplifying assumption. We assume that

Guikz) = Q2m | 1/[z — (p * kjm) — L0t — Q]| 2m)
~ 2m | 1z — (p * k/m) — Qint — O] 2m) (32

where iQ2, = I', = noyv.e; . This assumption is made to simplify the analysis.
It is not clear that any new information would be obtained by treating the
collision operator more accurately. Nevertheless, this assumption still
contains the crucial competition between physical processes.? The v - k term

% Treatment of the interesting questions relating to motional narrowing of the Rayleigh
and Raman lines would require a modification of the kinetic equation to include memory
effects, as, for example, in Ref. 12.
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describes Doppler effects, £2, contains collision effects, while £2int contains the
effects of rotational level spacing and precession of the magnetic moments
about a magnetic field. Cooper ef al.® have fit the pressure dependence of
Rayleigh line of N, with o, = 28 A2, If we assume for N, that Hi™ = J2/2I
and neglect the field dependence f f; , then C, takes the form

1 T /2 o . .
CHlez) = :z; | Yom 1% ik (qu)r Z eIV Ciim 4 my | Y | jama)|?

i1dg
W[ LB (o r, - M D it D

mh,
(33)

where (| Yy, 12" = ] Y, |2 Qint, b, = yH is the molecular precession
frequency, and

w§) = Gfm) [ dx [lexp —x/(¢ — 0] = [exp(—EIIL — erf(—if)]

is a standard complex error function.®® The angular momentum matrix
elements of the spherical harmonics for diamagnetic molecules can be
obtained from@®

Chm + my | Yo | joms)
= f ase Y;:m+m2('g) Yzm(‘Q) Yngz(*Q)

mtmy [ S+ D@2 + D) 1M (A 2 Jo( S 2 je
=D 2[ 4 ] (O 0 0)(1/;’z—{—m2 m mz)
349

From Eq. (34) it is clear that our treatment of the Rayleigh (j; = jj)
line is equivalent to Hess’s™Y since the j; = j, matrix elements of Y, are
proportional to the matrix elements [J]?.

Using the Racah formula®® for the 3/ symbols we have calculated
G,2(kw + i€) numerically. In Fig. 3 we have plotted C*kw) in zero field
versus w for k = ko[, = 0.02. The moment of inertia I for N, is taken from
spectral data.®” Qur calculations correspond to a pressure of 588 Torr at
room temperature. In Fig. 4 we plot the Rayleigh part of C%(kw) for magnetic
field strength corresponding to /,/Iy, = 10. We see that the simple spectral
lines in zero field are split into quintets of lines corresponding to m = 0,
+1, +2.

6. DISCUSSION AND CONCLUSIONS

We have extended the calculation of magnetic field effects on collective
properties of polyatomic gases outside the hydrodynamic regime. We have
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Fig. 3. The orientational correlation function for nitrogen. The
Stokes and anti-Stokes rotational bands are clearly seen. The unit
of frequency here is @ = 2[w.

Fig. 4. The Zeeman splitting of the central line of the
depolarized spectrum for nitrogen in a magnetic field &/I";, = 10.
The splitting is small for nitrogen since nitrogen is diamagnetic.

328
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made the simplest possible assumptions which are consistent with the known
behavior of the transport coefficients in a magnetic field. These calculations
were applied in a straightforward manner to the calculation of the spectrum
of polarized light scattering,

The depolarized spectrum has been calculated using the simplest
possible assumptions consistent with pressure and Doppler broadening and
internal rotational structure.

Our calculations could be improved upon in several ways. The calculation
of the polarized spectrum could be improved by including more basis vectors
in the Q, subspace. If this were done, however, it would no longer be possible
to determine all the collision parameters from transport measurements. The
calculation of the depolarized spectrum could be improved by retaining the
coupling of the second-rank orientation tensor with the other properties of
the system.

Considering the present body of experimental knowledge of polyatomic
gases, we do not see at this time the point of extending our calculations
beyond the approximations considered. When the experiments are more
accurate and the deficiencies in our calculations are more apparent then it
will be straightforward to improve our calculations.

APPENDIX A. THE COLLISION KERNAL 2,
The kinetic Eq. (1) was obtained” with a collision kernal given by

Q,pp’) = i 5C(pt)/of (xp't) (A1)
where

2C@pt) = (2m)~? f dp, dp, dp, dw 1V®1P@ 8(p, 4 p, — p; — P

X AT(@py + P> 3(Pr — P2)s 5(Ps — Po), 1) f(¥Ps?) / (rPat)

X 8(w — &(ps) — €(pa))

X T, Ps + Pas> 305 — Po)> @1 — 1)), 8w — &(py) — &(p))}
—{T@ Py + P2> 2(Ps — Pa)s £, ) O(w — &(ps) — &(py))

X T, py + P » 31 — Po)s 30z — Pa)s 1, @), F(@py2) f(tpat)

X O8(w — &py) — &p))} (A.2)

where é(p;) = (p22m) + HPint and T(rp, + Ps, 3(P1 — P2)s 3(Ps — Pa), Iw)
is the two-particle scattering amplitude at position r at time ¢ for the scattering
process in which p; and p, are the moments of incoming and p; and p, the
moments of the outgoing particles when the incident and final particles
have total energy w.
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APPENDIX B. REDUCTION TO A FINITE MATRIX EQUATION

We wish to show that the projected function K can be obtained from
a finite matrix equation if we assume (25). We illustrate this argument
schematically. Using the operator identity

1/(4 — B) = (1/4) + (1/4) B[1/(4 — B)] (B.1)
we see that
1
=g wm om0y ¢
1 1

= Cemom-0,pkmo ¢ T o0, G Wm0
X Q4(882) 0,KQ
So we have

00KQy = QoK' Qs + QoK' Q(8£2) 0,KQ, (B.2)
where
K =1z — Qmt — Q) — (p - k/m) Qo]

We can evaluate K’ since we have from (B.1)

o 1 . 1 p-k .
KO = ow o prm & —om- o, g km m 'K
= K°%Qy— K%p - k/m) PK'Q, (B.3)
where
K = 1/[z — Qint — Q, — (p - k/m)]
thus
PK'Q, = PK°Q, + PK%p * k/m) PK'Q, = [P — PK%p * k/m) P} PK°Q,
(B.4)
We observe that
Kop - kjm) = —1 -+ Ko(z — Qmt — Q) (B.5)

So
P — PK¥p «kjm) P = PK%(z — Q) P
and (B.6)
O,Kp - kjm) P = QK%z — L) P

where we have used 0irtP = 0,
Putting these all together, we obtain

0uK'Qy = QoK°Qy — QuK°P(PK°P)t PK°Q, (B.7)
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The matrix elements of K°can be evaluated directly and involve complex

error functions. Once QyK’Q, is known from (B.7), then (B.2) is a finite

m

atrix equation in the @, subspace. Its solution is formally written as

0uKQy = [Q — QuK'Qy(3£2) Qo] QK'Q, (B.8)
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