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The effect of magnetic fields on collective properties of polyatomic gases 
has been extended outside the hydrodynamic regime. The calculations are 
based on a linearized Waldmann-Snider  equation. The Waldmann-Snider  
collision operator is truncated yielding a finite matrix equation. The resulting 
matrix equation is solved on a computer to yield the polarized and depolarized 
light scattering spectra. These spectra are calculated in the absence and 
presence of a magnetic field. For  long wavelengths it is found that the magnetic 
effects are of the same order of magnitude as in the Senftleben-Beenakker 
effects. For  shorter wavelengths the effects disappear due to Doppler effects. 
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1. I N T R O D U C T I O N  

The first indication that collective properties of polyatomic gases are affected 
by a magnetic field was given by Senftleben m in 1930 when he observed that 
the thermal conductivity of oxygen was changed by a few per cent by the 
application of a field. The corresponding effect on the shear viscosity was 
seen by Engelhardt and Sack ~2) in 1932. A similar effect was seen for nitric 
oxide but nothing at the time was observed for diamagnetic gases. 
However, in 1962 Beenakker e t  al.  ~ demonstrated experimentally that the 
shear viscosity of carbon monoxide showed field effects similar to those of the 
paramagnetic gases. The corresponding thermal conduction effect was 
observed by Gorelik and Sinitsyn ~) in 1964. 

The field effects on the transport coefficients are now well understood 
in terms of the coupling of the rotational magnetic moment of a polyatomic 
molecule to the magnetic field. Taking into account this coupling, McCourt 
and Snider ~) have calculated the transport coefficients in a static field for 
molecules having a constant g factor using the Waldmann-SniderCG) (WS) 
transport equation. Their analysis was extended to include collinear static 
and oscillatory magnetic fields by Fleming and Martin m and Roden e t  al.  ~8~ 

Fleming and Martin have extended the analysis to include a distribution of 
molecular magnetic moments, which is important when discussing para- 
magnetic gases. A more extensive discussion of field effects on transport 
properties is contained in the excellent review by Beenakker and McCourt? 9) 

If the transport coefficients of a polyatomic gas are affected by a magnetic 
field, then there will be a corresponding effect on the hydrodynamic (1~ 
equations for the gas. In this work we have extended the theory of the 
collective behavior of polyatomic gases outside the hydrodynamic regime. 
We expect this extended theory to be useful in the analysis of neutron 
and light scattering experiments. Our calculation of the depolarized light 
scattering spectrum includes the rotational Raman lines as well as the 
Rayleigh line. This extends the calculations of Hess, m) who treated only the 
Rayleigh line. 

2. K I N E T I C  T H E O R Y  

In order to calculate the collective properties of polyatomic gases we 
need a kinetic equation which includes internal degrees of freedom and can 
be extended to shorter than hydrodynamic wavelengths. An equation a~ is 
used which is an extension of the WS equation: 

4 ~ d~ ~(p~) G(k~p'z) = g(p -- p') 12 (1) [z (p" k/m)] G(kpp'z) 
J 
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where k is the wave vector and z is a complex frequency such that Im z > O. 
Here G is an analytic function o fz  in the upper half-plane, In addition to the 
explicit dependence on the spatial variables, G is also a two-particle operator 
in the direct product space of internal variables. 12 is the corresponding unit 
operator in that space. Iff~a,(rpt) is the Wigner operator at position r and 
momentum p at time t corresponding to internal states labeled by A and A', 
then G is related to the correlation function of t w o f ' s  Iz2) by 

f0 G(kpp'z)fo(p') ---- (1/i) dt d(r -- r')[exp(izt)]{exp[oik. (r -- r')]} 

• ({[f(rpt) -- ( f(rpt))] ,  [f(r'p't') -- (f(r'p't '))]}) (2) 

where the labels A, )( are implicit, the brackets ( ) denote the equilibrium 
expectation value, and 

f0(P) = (f ( rpt))  = (n/Qi~9(fl/2rrm)3/2 exp{-fi[(p2/2m) + Hint]} (3) 

Hlnt is the single-particle contribution to the internal-state Hamiltonian 
and Q~nt = tr exp(--/3H ~nt) is the internal-state partition function. In 
Eq. (1) the notation jc d~ is used to denote simultaneously integration over 
and a trace over internal variables. The kernal ~2 of Eq. (1) consists of two 
parts: 

O(pp') = [Hjnt, lz] ~(p -- p') -~ O~(pp ') --~ ~'~int(pp') @ ~,'~c(pp') (4) 

The first term contains all the single-particle contributions of the internal 
variables to the dynamics, while Oc contains the effects of two-body collisions. 
The explicit form of s c in terms of the full two-particle transition matrix 
of the system is given in Appendix A. 

Equation (1) is consistent for low frequencies and long wavelengths 
with the correct hydrodynamic behavior in terms of the transport coefficients 
calculated from the same equation. However, since the terms discarded in 
deriving Eq. (1) a2) are of higher order in the density, we expect it to be a good 
approximation for dilute gases for all frequencies and wavelengths in the 
same sense that the ordinary Boltzmann equation is a good approximate 
equation for all frequencies and wavelengths for atomic gases. We therefore 
examine the solution of (1) as a function of k and z. In particular we shall be 
interested in the density-density correlation function S(kco), which is related 
to G by 

S(kco) = --2 Im ~ dp dp' G(kpp'oJ q- ie)fo(p' ) (5) 

and which is directly measured in neutron scattering and polarized light 
scattering. 
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For depolarized light scattering we shall be concerned with the orientational 
correlation function 

S~,~,(kco) -- --2 hn  f dp dp' YL(0r G(kpp'w q- ie) Yzm'(0r (6) 

where Y~.~(0r is a spherical harmonic of the molecular orientation specified 
by the angles 0 and r It can be shown(13) that S~.~, describes the depolarized 
light scattering for a gas of linear molecules. 

In order to examine the nature of the solution to Eq. (1), assume that 
the Hamiltonian consists of two parts 

H int = H~ nt -- y J "  H (7) 

where J is the total internal angular momentum of a molecule and H is a 
static magnetic field. Hi  nt is the internal Hamiltonian in the absence of any 
external field. H~ nt is therefore rotationally invariant and hence commutes 
with J:  

[a, H U ]  = o (s) 

In Eq. (7) Y = gstzn (h = 1) is the gyromagnetic ratio with gj the Land6 g 
factor and/Zn the nuclear magneton. In general gj should be treated as a 
scalar operator in the internal-state space. However, for simplicity gs is treated 
as a constant. The generalization to include the operator character of gs is 
straightforward and can be handled by the method introduced in Ref. 7. 

It is readily shown that Eq. (1) is consistent with the conservation laws 
of particles, momentum, and energy. ~ This can be seen since (1)p 

. dp s --= 0 
p2/2m -t- H int 

(9) 

It is convenient therefore to think of Eq. (1) in terms of the Hilbert space 
defined by the set of all functions of p and internal variables with scalar 
product defined by 

<~bl 4 )  = (1/n)~ dp ~b(p) r ~ <~b(p) r (10) 

where n is the number density. 

Equation (1) is not, however, consistent with conservation of angular momentum. This 
point has been discussed extensively in Ref. 12. 
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The conserved variables form a five-dimensional subspace of this Hilbert 
space. We represent this subspace in terms of the orthonormal basis functions 

(p[ 1) ~ ~b~(p) = 1, ( p [ 2 )  --~ ~b~(p) = ( f l / m ) l / ~ p  (11) 

( p i 3 )  ~ ~b3(p) = (/3/~/c~,)[(p2/2m) - -  (3/2/3) § H int -- (Hin*)] 

where cv is the specific heat of the gas. 
Equation (1) can be projected into this subspace to give a "matrix" 

equation of the form 

[ z ~  - Z ~ , ( ~ ) ]  a ,~(kz)  = ~ ~,/3, 7 - ~, 2, 3 (12) 

where a summation convention is employed over repeated indices, 

a~o(kz) = (c~ I G(kz)]/3) ~ (c~ [ 1/[z - -  ( p "  k / m )  - -  011 /3 )  

= (l/n) f dp dp' ~b~(p) a(kpp'z) ~(p') 

and "inass opera tor"  

+ ~ T Q z - Q [ ( p .  k/m) + ~1 Q Q ~ - -  /3 
3 

with Q = 1 - P and P = Z~=z[ c~)(c~ I. Formally, Eq. (12) is an exact 
projection of Eq. (1) onto the subspace of conserved quantities. In effect all 
we have done is to shift the emphasis from calculating the operator 

G ( k z )  ~- 1/[z - -  (p" k / m )  -- ~] (13) 

to calculating the memory operator 

1 1 
K(kz) = O z - O(p " k / m )  + f2 o = Q z - -  Q(p" k / m )  O - g2 o (14) 

since Ps = ~2P = 0. 
Equation (12) is exactly equivalent to Eq. (1). Our method of approximate 

solution for K will be outlined later. We first notice that the Z' matrix can be 
put into the especially suggestive form 

0 0 

i/2 k - - i k ' n ( k z ) ' k  [ m ti/2 k ( /3 ]i/2 
-m m n  \--~-~ / -m -- ~ J--n~-c~ / k "  Brs~(kz) : kk 

[ m]i: ~k ( /3 ll/~ k ' x ( k z ) ' k  
0 \/3c~ / m - \ ~ :  kk : Bsj(kz) �9 k - i  c ~ k , n  

(15) 
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where 

1 I r} ~q(kz) in \ T  Q z -- Q(p " k/m) O -- :2 Q, 

 (kz) = in @ l o 

Brs~(kz)= --nfl ( T [  Q z 1--~ Q P Q 

P 

The stress tensor T and heat current J, are represented by 

(Pl  T )  = pp/m 
and 

(P I J~) = [(pZ/2m) -I- H ~nt] p 

1 L) 
z -  Q(p . k/m) Q - O Q I 

z --  Q(p" k/m) Q - ,Q Q ] 

1 
z - Q(p . k/m) Q - ~2Q [ T)  

(16a) 

(16b) 

~, x, and the B's are generalized transport coefficients defined such that 

lim lim •(kz) = n ~ ~11  + ns (17a) 
z-~0 k-~0 

the viscosity, a fourth-rank tensor (~% is the bulk viscosity and ~h the shear 
viscosity), 

lim lira x(kz) = x (17b) 
z-->0 k~0  

the thermal conductivity a second-rank tensor, and 

lim lim Brz(kz) = Br1~ = Bj~r (17c) 
z-->0 k-~0 

The B's are fourth-rank tensors and are usually called Burnett <14) coefficients. 
The equations of motion of the conserved variables are of  the form of  

generalized Burnett equations. This is to be contrasted with the usual treat- 
ments of "generalized hydrodynamics ''aS) which are generalizations of the 
Navier-Stokes equations. However, when pushed to full generality the 
generalized hydrodynamic procedure must yield equations very similar to 
ours. cz6) Once we have an expression for K we can solve Eq. (12); in 
particular we would obtain the density correlation function 

S(kco) = --2n Im Gl~(kco -t- ie) (17d) 

3. H Y D R O D Y N A M I C  L I M I T  

It is clear from (14) that in the limit of low frequencies and long wave- 
lengths our equations reduce to the ordinary linearized Navier-Stokes 
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equations. In the presence of a magnetic field the transport coefficients are 
no longer isotropic. There are five independent components of the shear 
viscosity and three independent components of the thermal conductivity. 
As a result the damping coefficients implied by the Navier-Stokes equations 
will depend upon the direction of  the vector k relative to the magnetic field H. 
With this in mind it is straight forward to generalize the treatment of  the 
hydrodynamic behavior of  correlations of conserved quantities as presented 
by Kadanoff  and Martin ~m to include anisotropic transport coefficients. 
Since the field effects on the transport coefficients are typically of the order 
of a few per cent, the mixing of transverse and longitudinal modes due to the 
field can be neglected. Thus we obtain for the density-density correlation 
function 

n [ tD.~k2[1 - -  (c~/c . )]  
S(kr 

Dlk4Cl(2C~/Cg) - -  D2k~(w  ~ - -  ca=k 2)[1 -- (c~/c~)]{ 
+ (o j2 - -  cz2k~)2 + (D~k2oJ) 2 

(1 8) 
# 

where 

( ) (% D1 = %asz+ te~__~3 1 1 D2 = ~%z cz2 
m~ 1 m~? c~ c~ ' " m %  ' = m - ~  

The elements of the transport coefficients are calculated in the Cartesian 
basis defined by the three unit vectors 

~3 =/~, ~z = (H --  cos 0/~)/sin0, ~ = (/~ • H)/sin 0 

with cos 0 = /~  �9 ~ .  
It was shown in Ref. 7 that a convenient representation for the transport 

coefficients is 

and 
= ~ 1 1  + ~ % e . e .  (19) 

c is the isotropic third-rank tensor and 

(e . )  : e0 = x / ~  (H/~  - -  ~ ), e• 11 = (1 / r Z~) 

e• = &g~:, ~• ----- (1/~/2)(~3 sin 0 --  ~z cos 0 :k i~2) 

In terms of this basis the appropriate components of the transport coefficients 
a r e  

*/3aaz = ~/~ + ~%( cos2 0 - -  1)2 + �88 - / % 0  sin 2 0 + ~(% -k */_.o) sin 4 0 

I%a = tql cos ~ 0 + to j_ sin s 0 (20) 
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The corresponding expressions for the density-energy correlation 
function S~(kr and energy-energy correlation function S~(kr are 

~n D2k ~ D l k 2 ( o j  2 - -  c1 2 k  2) 

_}_ e + p_ S~.(kc~) (21) 
n 

mnc~,D2k 2 e 4 - p  [ E @ p ]  z 
S~(k~o) = ~o~ + (DJc2) 2 + 2 n S.~(ko~) + ~ n /  S..(k~o) 

where n, e, and p are the number density, energy density, and pressure of the 
equilibrium system, respectively. 

Even though the coupling of the transverse and longitudinal modes is 
negligible, we must take into account the splitting of the usual twofold 
degenerate transverse diffusive modes ~m due to the presence of the field. 
In terms of the basis defined in (2) the transverse momentum correlation 
functions are of the form 

~ / ~  
Srg(kco) = [o~z + (Dlk2)21[o~ + D2k2)21 

[o~2Dnk 2 § [DnD 2~- (D1~)2] D22k n -D~2k2{~o2_ kt[Dl~D22 _ (DZ2)2]}] 
• \_D12k2{oo2 _ k4[DnD2Z _ (O12)2]} o~2D22k 2 + [DnD 22- (O12)2] Dnkn/  

(22) 
where 

D l l  ~___ -q3113/mrt ,  D 12 : ~?~12a/mn, D 22 : ~'/3223/mrt 

and 
D ~ D n + D 22 • [ ( D  n - -  D22)2 _ 4(D12)2]z/2 
D 2 2 

In terms of our invariant representation of the transport coefficients the 
components of the viscosity are 

~8113 = [~/o -? a~e(~/2 § ~/-2)] s in2 20 + �88 + ~/-1) cos2 20 

~3223 = }(~h -? %1) cos2 0 + �88 + ~7-2) sin2 0 

~13123 = - - � 8 8  - -  ~/-1) COS 20 COS 0 -- �89 -- ~1-2) sin 20 sin 0 

(23) 

The specific expressions for the transport coefficients in the presence of the 
magnetic field are approximately given by (7,8~ 

L hs/r88 (h2/;9) 2 
% = 2 ~  [ 1 - - e  2 ] [ l - - a 0  ] 

1 + (ilzhJPs8)J ' KII = tc 1 + (h J/'99) 2 J 

(h,//~99)2 (2hj/,99)2 ]] (24) 
K •  [ l - - a 0 ( 1  1-k-(hJl'99) 2 + 1 - ~  (2hJ/99)211 
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Table I= 

i 

Gas ~ ao/ ~ 2 h~/1"88 ~ / ~  

3t9 

N~ 0.003 3.5 O.O00144H/P 0.490 

CO 0.00375 2.19 0.0001 IOH/P 0.570 

CH4 0.00077 3.57 O.O000485H/P 0.288 
i 

H in Oe, P in Torr. 

where ~ and K are the viscosity and thermal conductivity of the gas in the 
absence of the field; h~ ~ 7 H  is the precession frequency of the molecular 
magnetic moment; l"ss and /"99 are molecular collision frequencies which 
will be defined in the next section; s e~ and a0 are dimensionless parameters of 
the order of the square of the deviation from sphericity of the molecules. 

The parameters in Eq. (24) can be obtained from direct transport 
measurements in the presence of a magnetic field. Typical values of these 
parameters as determined from experiments by Korving et a/. (18) are given 
in Table I. Since S(ho) gives the spectrum of polarized light, the magnetic 
field effects on the transport coefficients should be seen in the experimental 
linewidths of light scattering experiments. 

4. E X T E N S I O N  T O  S H O R T E R  W A V E L E N G T H S  

In order to solve Eq. (12) for arbitrary frequencies and wave numbers, 
certain assumptions about the form of the collision kernal $2 ~ must be made. 
This must be done in a way which is consistent with approximate calculations 
of transport coefficients. This assures that the solution will have the correct 
hydrodynamic limit. Assume that D e is of the form 

S2~ = Oo + Qo(~9) Qo (25) 

where ~0 is a constant and Q0 is a projector on a subspace of the Q subspace. 
If s = 0 and Q0 = Q, Eq. (25) is exact. By keeping only a finite subset 
Qo of Q, it is hoped that all of the important physics of the collective pro- 
perties will be retained. By projecting out the conserved variables, we have 
separated all the slowly decaying quantities at long wavelengths from all the 
other nonconserved variables which must decay more rapidly. As discussed 
elsewhere, (19) it is just this separation of time scales which implies the hydro- 
dynamic equations at low frequencies and longwavelengths. The assumption 
that Qo corresponds to a finite subspace is equivalent to terminating Mori's ~2~ 
continued fraction representation at a finite number. In order to obtain the 

8zz/7/4-3 
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correct hydrodynamic limit which gives the magnetic field effects, we include 
in Q0 not only the currents of the conserved variables, but also internal 
variables which couple with the currents and also to the magnetic field. As 
stressed in Ref. 7, these internal variables should contain the internal angular 
momentum J in terms of a second-rank tensor. Thus as in Ref. 7 we assume 

where 

(p 4) =-- 

(p 5 )~ -  

(p 6 ) ~  

(p 7) 

(p 8) 

(p 9) 

9 

Oo= E 
e~4 

~)(~ I (26) 

~ )  

+~(P) 

O9(P) 

i Cv ~1/2 ~ joint [ p2 
cintc~ ~ ] L-b~-+ k 2m 

__ /3 [p]<2), 
V'2 m 

-~-~-~o1 f l ( 2 m  P 

= ( /3/md~t)~/~ ~ ( H ~ t  - -  ( H i . t ) )  p 

= ( 3 0 / ( 4 J ~  - -  3J~))~/~ [J](~) 

= (30f l /m(4J  a --  3J2})1/~ [J](~) p 

"2c  

where c int is the internal contribution to the specific heat in units of kn,  
c0___~_, c O _  5 [_](2) -- �89 ] ~ i J  2. ~, r, ij P iPj  --  �89 ~iJP 2, and Ill (~) - -  = t+aij 
The currents of the conserved quantities are given in terms of the ~b's by 

(p [ Q [ T) = (1/fl)(cint/c~c+~ a/~ ~b,(p) 1 -t- (~/2/fl) d&(p) 
(27) 

(Pl Q I L )  = (c~~ 1/2 t~6(p) + (cint/mfl 3) +7(1 I) 

When discussing depolarized light scattering we also need 

(p [ 2m) : ~b2m(p) : Y2m(O, r  I Zero) 1/2 (28) 

For simplicity the coupling of the Y2m to the ff~, ~ = 4,9, will be neglected. 
That is, we assume Y2m is outside of the Qo subspace. This is almost certainly 
not the case. In fact ~2~ is not even orthogonal to ~8. A more correct 
treatment would assign the part of ~2~ which is orthogonal to dr as a separate 
vector in the finite vector space and then keep the contributions of both 
vectors along with their possible coupling to the depolarized scattering. 
However, it will greatly simplify the analysis if ~2m is treated separately from 
the ~ ,  ~ = 4, 9. As more depolarized light scattering data become available, 
it may be necessary to carry out this more complete analysis to obtain 
quantitative agreement with experiments. 
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The matrix elements of  Q~ are parameterized in a particularily convenient 
way. From the requirement that the collision operator be isotropic we obtain 
the following nonvanishing matrix elements of  X2~: 

�9 ~ = v ~ .  " ~ = v , ~ v .  " ~ = v o j .  ts 1-Q55 lX266 

isC2~s = /-'58I*, ida7 = /'67 Is, ,'X2~9 = /-'67 I* 

i ~ 7  = /'~71, s = / ' s J * ,  ida, = / ' g J * l ,  

i o ;  = r , ~ v ,  i ~  ~ = Vo 

where I~j~ - -  l ( 3 i k  8je -~ 8ie 8it ~ - -  -} 3ij  8kt ) and is c is self-adjoint and positive 
definite. 

The F ' s  are not independent. McCourt  and Snider (5~ have proven the 
following indentities among the collision matrix elements: 

v ~  = ~ / ~  r 0 ~ ,  v00 = ~ r ~  + ~ - v ~ ,  

(29) 

In Appendix B we show that the solution for K reduces to a finite matrix 
equation. The evaluation of the matrix elements involves complex error 
functions. As a result it is useful to calculate the error functions by computer 7 
and to solve the matrix equations numerically. The numerical work was done 
on Columbia University's IBM 360/91-360/75 computer. For  calculational 
purposes we chose gaseous N2 as a typical diamagnetic gas. The collision 
parameters can be obtained f rom field-dependent transport  measurements. (zs) 
We used the values deduced from these measurements by McCourt  and 
Moraal. (22) For  simplicity we assume T' 0 = / ' s s  = ncrVrel, where n is the 
density, Vrez = 4(1/rrmfi) 1/2, and ~ = 23 •2. 

In Fig. 1 we have plotted S(koo) versus co for three different k 's  in zero 
field. The transition between hydrodynamic behavior at long wavelengths, 
kinetic theory at intermediate wavelengths, and free-particle behavior at 
short wavelengths is clearly seen. 

At  short wavelengths the Lorentzian Rayleigh-Brillouin spectrum is 
replaced by the Gaussian free-particle spectrum. The frequency unit used 
in Fig. 1 is o5 = o~/kv, where v = (2~raft) l& As a result the position of  the 
sound peak is independent of  k and occurs at 05 = 0.833. This natural 
dimensionless frequency unit was first used by Yip. (2~ In Fig. 2 the change 
of S(koJ) f rom its zero-field value for h~/Fs~ = 2 is plotted. An effect on the 
width which is of  the same order of  magnitude as the Senftleban effects for 
long wavelengths is evident. The magnetic field effects disappear for short 

7 We have extended the program described by Christiansen. (~~ 
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Fig. 1. The dynamic structure factor S(k~o)(in units of n/l~o, 
where n is the number density and _r 0 is a collision frequency) 
versus co for three different wave vectors and parameters appro- 
priate for nitrogen. The frequency unit is ~ = oJ/kv, where 
v ~ --2~mr is a thermal velocity. Therefore the position of the 
sound peak is always at ~ = 0.833. The unit of wave vector is 
k = kv/F o. 

wavelengths  as soon as kv/hs  >~ 1. Tha t  is, the  app rop r i a t e  f requency 
descr ibing the wavelength  dependence  is k v  while hs ,  the L a r m o r  frequency,  
is the  a p p r o p r i a t e  magnet ic  field frequency.  So the k v  te rm domina tes  at  
large k. 

5. D E P O L A R I Z E D  L I G H T  S C A T T E R I N G  

The spec t rum of  depo la r ized  l ight  is given by ~13~ 

C2(kco) ~ f dr dt [exp( io~t )][exp(- - ik"  r)](P2(~(rt  ) �9 ~(0, 0))~ (30) 

where P~ is the  second Legendre  po lynomia l  and  ~(rt)  is the o r ien ta t ion  
vec tor  o f  a molecule  at  po in t  r a t  t ime t. I t  fol lows immedia t e ly  f rom the 
add i t ion  theorem of  spherical  ha rmonics  tha t  C ~ is given by  a 

2 

C2(k~o) = �89 ~ C~(kco)  (31) 

s If the axis of quantization is chosen to be the magnetic field direction, then matrix elements 
of G corresponding to m' r m vanish. 
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The dev ia t ion  AS(k~)  = S(k, ~)  - -  S(k,  oJ)j,v=0 o f  the 
dynamic structure factor due to a magnetic field perpendicular to k 
with magnitude such that hi1" = 2; three different wavevectors and 
parameters chosen for nitrogen. For  long wavelengths the change 
is the same relative order of magnitude as the Sentleben effects. 
However, the effects disappear rapidly for shorter wavelengths. 

where 

C~2(kw) : f dp ap' ~b~m(p) G(kpp'oJ + ie) ~b2m(p')f0(p' ) 

[c.f. Eq. (25) for the definition of ~b2~]. 
In order to calculate C ~ from the transport equation (1) we make a 

simplifying assumption. We assume that 

G~(kz) : (2ml 1 / [ z  - -  (p �9 k / m )  - -  ~2 Int -- ~Qc] [ 2m) 

(2ml 1 / [ z  - -  (p �9 k / m )  - -  ~ n t  __ (2~]i 2m) (32) 

where i ~  = / ' 2  :-  n c ~ 2 V r e t .  This assumption is made to simplify the analysis. 
It is not clear that any new information would be obtained by treating the 
collision operator more accurately. Nevertheless, this assumption still 
contains the crucial competition between physical processes. 9 The v �9 k term 

9 Treatment of the interesting questions relating to motional narrowing of the Rayleigh 
and Raman lines would require a modification of  the kinetic equation to include memory 
effects, as, for example, in Ref. 12. 
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describes Doppler effects, g2~ contains collision effects, while $'~int contains the 
effects of rotational level spacing and precession of the magnetic moments 
about a magnetic field. Cooper et aL (s4) have fit the pressure dependence of 
Rayleigh line of N2 with crz =- 28 A s. If we assume for N~ that Hi  nt = J~12I 
and neglect the field dependence f f0 ,  then C~ takes the form 

C~(kz) = ~ <l Ys,~l I~> ' ~Tr (mfi)ll . .  ~' e-J~(r <jim -~- m2 I Y2m IJ2m2>] 2 
313s 

w 
2 21 :J 

(33) 

where (I Ysm Is> ' =- ([ Y2m Is> Qint, he = y H  is the molecular precession 
frequency, and 

w(~) = (i/Ir) dx [(exp --x2)/(~ -- x)] = [exp(--se2)][1 -- erf(--i~:)] 

is a standard complex error function. (25~ The angular momentum matrix 
elements of the spherical harmonics for diamagnetic molecules can be 
obtained from (sG) 

<jim q- m2 I Ys~ [ j~mz> 

- -  f 
r 5(2:, + + i) iz/s 

4o .j [ 0 0 m + m s  m m~ 
(34) 

From Eq. (34) it is clear that our treatment of the Rayleigh (Jl = J2) 
line is equivalent to Hess's (n~ since the j~ = Js matrix elements of Y2 are 
proportional to the matrix elements [j](z). 

Using the Racah formula (26~ for the 3j symbols we have calculated 
G~2(keo + iE) numerically. In Fig. 3 we have plotted CS(kco) in zero field 
versus co for k = kv/I" o = 0.02. The moment of i ne r t i a / fo r  Ns is taken from 
spectral data. (sT) Our calculations correspond to a pressure of 588 Torr  at 
room temperature. In Fig. 4 we plot the Rayleigh part of C2(kw) for magnetic 
field strength corresponding to hslI~z = 10. We see that the simple spectral 
lines in zero field are split into quintets of lines corresponding to m = 0, 
Jcl, i 2 .  

6. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We have extended the calculation of magnetic field effects on collective 
properties of polyatomic gases outside the hydrodynamic regime. We have 
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made the simplest possible assumptions which are consistent with the known 
behavior of the transport coefficients in a magnetic field. These calculations 
were applied in a straightforward manner to the calculation of the spectrum 
of polarized light scattering. 

The depolarized spectrum has been calculated using the simplest 
possible assumptions consistent with pressure and Doppler broadening and 
internal rotational structure. 

Our calculations could be improved upon in several ways. The calculation 
of the polarized spectrum could be improved by including more basis vectors 
in the Q0 subspace. If this were done, however, it would no longer be possible 
to determine all the collision parameters from transport measurements. The 
calculation of the depolarized spectrum could be improved by retaining the 
coupling of the second-rank orientation tensor with the other properties of 
the system. 

Considering th e present body of experimental knowledge of polyatomic 
gases, we do not see at this time the point of extending our calculations 
beyond the approximations considered. When the experiments are more 
accurate and the deficiencies in our calculations are more apparent then it 
will be straightforward to improve our calculations. 

A P P E N D I X  A. T H E  C O L L I S I O N  K E R N A L  ~c 

The kinetic Eq. (1) was obtained (7) with a collision kernal given by 

g2~(pp') = i 8C(rpt ) /S f  (rp' t) 

where 

2C(rpt) = (270 -3 f dp2 dp3 dpa d~o 1(1)(8)1(2)(4)~2 ~ 2  8(Pl + P2 - -  P3 - -  P4) 

• {T(rpl + P2,�89 -- P2), �89 -- P4), t oJ ) f ( rp3 t ) f ( rpd)  

• 8(o~ - ~ ( p 3 )  - ~ ( p , ) )  

)< 

(A.1) 

T*(r,  P3 + P~,  �89 - -  P4), �89 - -  P2)), 3(~o - -  ~(Px) - -  ~(P2))} 

- -  {T(r ,  Pl  + P 2 , � 8 9  - -  P4), t, co) 3 (m - -  ~(P3) - -  ~(P~)) 

• T*(r, Pz + P 2 , � 8 9  - -  P~), �89 - -  P4), t, co),f(rplt)f(rp2t ) 
• ~(,o - ~ (pO - ~(p~))} (A .2 )  

where g(Pi) - (P12/2 m) -q- H(i)int and T(rpl q- P2, �89 -- P2), �89 -- P4), t~o) 
is the two-particle scattering amplitude at position r at time t for the scattering 
process in which Pl and P2 are the moments of incoming and P3 and pa the 
moments of the outgoing particles when the incident and final particles 
have total energy co. 
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A P P E N D I X  B. R E D U C T I O N  T O  A F IN ITE M A T R I X  E Q U A T I O N  

We wish to show tha t  the  pro jec ted  func t ion  K can be ob ta ined  f rom 
a finite ma t r ix  equa t ion  i f  we assume (25). We  i l lustrate  this a rgumen t  
schematical ly .  Us ing  the ope ra to r  ident i ty  

1/(A --  B) = ( l /A)  + ( I /A)  B[1/(A --  B)] 

we see tha t  
l 

K = Q z - (p -  k/m)  + .(2 int + ~2 ~) Q Q 

1 
Q(z - s i n t -  s o - (p" k/m) Q 

• 0o(3s OoKQ 

So we have 

Q + Q  
z -  Qin t_  $2 ~ _ ( p .  k/m) Q 

= K '  QoKQo Qo Qo + QoK'Qo(8J2) QoKQo 

where 

K' = 1/[z --  .C2int - -  O o - -  (p �9 k/m) Qo] 

W e  can evaluate  K '  since we have f rom (B.1) 

1 1 p ' k  
K'Qo = z -  ~Qint _ " Q 0  - -  (P" k/m)  Qo - z -  X2 int - s o - (P" k/m) rn 

= K~ K~ �9 k/m) eK'Oo 

where 

K 0 -~- 1 / [ z  - -  i f 2  i n t  - -  ~ 0  - -  (P " k/m)] 

(B.O 

(B2) 

PK'  

(B.3) 

QoK~ �9 k/m) P = QoK~ --  f2o) P 

where  we have used g2intP - -  O. 

Put t ing  these all together ,  we ob ta in  

QoK'Qo = QoKOQo - QoKOp(pKop)-i  pKOQo (B.7) 

and  (B.6) 

P - -  PK~ " k/m)  P = PK~ --  Qo) P 

So 

thus  

PK'Qe : PK~ + PK~ " k/m) PK'Qo = [P - -  PK~ �9 k/m) p ] - i  pKOQo 

(B.4) 

We observe tha t  

K~ �9 k/m)  : --1 + Ko(Z --  Qint __ Oo ) (B.5) 
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The matr ix  elements of K ~ can be evaluated directly and  involve complex 

error functions.  Once QoK'Qo is known  f rom (B.7), then (B.2) is a finite 

matr ix  equa t ion  in the Q0 subspace. Its solut ion is formally writ ten as 

QoKQo = [Qo - QoK'Qo(~(2) Qo] -1 QoK'Qo (B.8) 
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